Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Задачи приводящие к понятию определенного интеграла Понятие функции нескольких переменных Понятие производной по направлению Линейные однородные дифференциальные уравнения Признак Даламбера Функциональные ряды

Примеры выполнения типового расчёта по курсу высшей математики

Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Вид частных решений, характеристическое уравнение (×)

 ЛОДУ с постоянными коэффициентами

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = 0, где все Pi (i=)= const

будем искать частное решение y=ekx , к – неизвестная постоянная

y’=kekx

y’’=k2ekx

……

y(n)=k(n) ekx

k(n) ekx + P1k(n-1) ekx + … + Pnekx = ekx(k(n) + P1k(n-1) + … + Pn) = 0

ekx0 => k(n) + P1k(n-1) + … + Pn = 0, (1)

y=ekx - решение ДУ

(1) – характеристическое уравнение для ЛОДу с постоянными коэффициентами, выражения слева характеристический многочлен.

Решением характеристич уравнения (1) дает систему частных решений ЛОДу, структура ФСР зависит от вида корней характер уравнения.

(1) – алгебраическое уравнение n-ой степени, может иметь не более, чем n корней, обознач-м эти корни характеристического уравнения через k1 ,k2 …kn 

Возможны случай

1)все корни хар-го уранения вещественны и различны

2)все корни различны, но среди них есть комплексные

3)среди действительных корней имеются кратные

4)среди комплексных корней есть кратные

Общий алгоритм решения ЛОДу с постоянным коэффициентом

1) составим характер уравнение : y=ekx , k(n) + P1k(n-1) + … + Pn = 0

2) найти корни характер уравнения k1 ,k2 …kn 

3) по характеру корней находим частное линейно-независимое решение по таблице 1

4) подставляем частное решение  на основе Теоремы о структуре общего решения ЛОДУ и получаем общее решение y =

Вид корня

Соответственное решение

1

Действ корень кратности 1

ekx

2

Пара корней abi;кратнос 1

eаxcosbx , eаxsinbx

3

Действит корень кратност α

ekx, хekx, х2ekx, х3ekx,…, хα-1ekx

4

Пара сопряж корней α abi

eаxcosbx , eаxsinbx

хeаxcosbx , хeаxsinbx

х2eаxcosbx , х2eаxsinbx

хα-1eаxcosbx , хα-1eаxsinbx


Линейные неоднородные дифференциальные уравнения n-го порядка. Теорема о структуре общего решения (док. для n=2). Теорема о суперпозиции решений (док. для n=2).

ЛНДУ

у(n) + P1y(n-1) +…+ Pn-1 y’ + Pn y = f(x) (1) Pi – непрерывна на отрезке (a,b)

Теорема о структуре общего решения ЛНДУ

Общее решение ЛНДУ есть сумма частного решения и общего решения соответственного ему однородного уравнения

Док-во:

Для уравнения 2-го порядка ( но теорема применима для уравнений любого порядка)

n=2

(1’) y” + P1(x) y’ + P2(x) y = f(x)

Обозначим  у*(х) – частное решение ЛНДУ

(х) – общее решение ЛОДУ

Показать, что

(2) у= у*+ - общее решение ЛНДУ

Найдем:

Дважды дифференцируем функцию (2) и подставляем у, y’,y” в (1’)

у*”(x) +”(x) + P1(x)[ у*(x)+’(x)] + P2(x)[ у*(x)+(x)] =

= [у*”(x)+ P1(x) у*’(x)+ P2(x) у*(x)] + [”(x) + P1(x) ’ (x)+ P2(x)  (x)] = f(x) + 0 = 0

= C1y1(x) + C2y2(x), y1,y2 – частное решение ЛОДУ y” + P1y’ + P2 = 0

C1C2 – подбираем так, чтобы они удовлетворяли начальным условиям

y(x0)=y0 , y’(x0)=y0’, для любых х0(а,в), и любых y0 ,y0’

C1y1(x0) + C2y2(x0) + у*(x0) = y0

C1y’1(x0) + C2y’2(x0) + у*(x0) = y0’

Линейная неоднородная система, определитель этой системы, определитель Вронского

  W[y1, y2]≠0 =>система имеет единственное решение при любых 0 , ’0 ,y*0 ,y*’0 , это означает у= у*+ - общее решение ЛНДУ

Теорема2 принцип суперпозиции (принцип сложения решений)

Если функция yi(x) является решением ЛНДУ

(3) y(n) + P1y(n-1) + … + Pny = fi(x)  то функция  = α1y1 + α2y2 + … + αnyn  , то это функция является решением y(n) + P1y(n-1) + … + Pny = α1 f1(x) + α2 f2(x) + … + αn fn(x) (4)

Док-во: для n=2

Подставим y, y’, y”, в (4) , учитываем что y1 y2 решение соответственного уравнения (3)

α1y1” + α2y2” + P1(x)[ α1y1+ α2y2] =

= [α1y1” + P1(x)α1y’1 + P2(x)α1y1] + [α2y2” + P1(x)α2y’2 + P2(x)α2y2] = α1f1(x) + α2f2(x)

Определение общего решения ДУ порядка выше первого, частное решение. Д.У. n-го порядка называется уравнение, которое содержит независимую переменную x, искомую функцию у, ее производную n-го порядка.

Определитель Вронского. Теорема о равенстве нулю вронскиана линейно-зависимых функций

Линейные неоднородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Метод неопределенных коэффициентов для уравнений со специальной правой частью. Метод вариации произвольных постоянных (вывод рабочей формулы).


Типовые расчеты по высшей математике