Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Дифференциальное исчесление Возрастание и убывание функций Основные правила нахождения производной Исследование функций и построение их графиков Образец выполнения типового расчёта

Примеры выполнения типового расчёта по курсу высшей математики

Задачи приводящие к понятию определенного интеграла. Понятие определенного интеграла, вычисление интеграла по определению. Необходимый признак интегрируемости (без док.)

1) Задача о нахождении площади криволинейной трапеции.

Определение: криволинейная трапеция – плоская фигура ограниченная линиями  , , , .-положительная и непрерывная на отрезке [a,b].

Разобьем промежуток [a;b] произвольно на n частей с длинами

Получим n-криволинейную трапецию, основание , ,.

  построим прямоугольник с основанием  и высотой  .

, где (меняется от 1 до n)

(получим приближенное значение S криволинейной трапеции)

(Интегральная сумма)

2) Задача о вычислении длины пути по заданной скорости.

Пусть точка движется прямолинейно вдоль числовой оси ,

Смещение (.)-и за малые промежутки времени.

Смещение

,

1. Разобьем промежуток [a;b] произвольно на n частей с длинами

2. В каждом промежутке выберем точку (ξ) и вычислим значение функции   в каждой из этих точек, получим значения (ξ)

3. Эти значения умножим на длины соответствующих промежутков , а полученные произведения сложим, получится сумма ∑:

которая называется интегральной суммой функции на данном промежутке

Определенным интегралом от функции у=на  называется конечный предел соответствующей интегральной суммы при неограниченном увеличении числа разбиений промежутка на части (nàoo) и стремлении длин всех частичных промежутков к нулю (хi à0)

если предел конечен и не зависит от разбиений и выбора точки  

, где  - подынтегральная функция.

-подынтегральное выражение.

а- нижний предел интегрирования.

в- верхний предел интегрирования.

d- длина наибольшего из отрезков разбиения.

условие интегрируемости функций.

Необходимый признак интегрируемости функции. Если функция f(х) интегрируема на [a,b], то она ограничена на [a,b]. Следствие (достаточное условие интегрируемости):Если функция ограничена и непрерывна на [a,b], всюду кроме конечного числа точек разрыва первого рода, то она интегрируема на этом отрезке [a,b]. 

Интегрирование. Образец решения типового расчёта № 4. Задание 1. Найти неопределённые интегралы: .

Производная и дифференциал функции двух переменных. Исследование функции двух переменных. Образец решения типового расчёта № 5. Задание 1. Найти и изобразить на плоскости область определения функции двух переменных: .

Свойства определенного интеграла. Теорема о среднем (без док.) Геометрический смысл. Среднее значение функции.


Примеры решения задач по математике