Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Дифференциальное исчесление Возрастание и убывание функций Основные правила нахождения производной Исследование функций и построение их графиков Образец выполнения типового расчёта

Примеры выполнения типового расчёта по курсу высшей математики

Типовой расчёт № 3

Ряды.

Образец выполнения типового расчёта № 3.

Задание 1. Составить формулу общего члена числового ряда: .

Решение. Во-первых, данный ряд является знакочередующимся, причём первый множитель является отрицательным. Поэтому формула общего члена ряда должна содержать множитель . Во-вторых, все члены ряда представляют собой дроби со знаменателем, равным единице. В-третьих, знаменатели каждой дроби являются квадратами последовательных натуральных чётных чисел:  и так далее. Таким образом, получим формулу: .

Задание 2. Найти 8-й член числового ряда .

Решение. .

Задание 3. Найти частичную сумму  числового ряда .

Решение: .

Задание 4. Исследовать на сходимость числовые ряды:

4.1. .

Решение. Проверим сначала для данного ряда выполнения необходимого условия сходимости: . Предел общего члена ряда не равен нулю, следовательно, данный ряд является расходящимся.

4.2. .

Решение. Данный ряд относится к типу обобщённых гармонических рядов , причём , значит, ряд расходится.

4.3. .

Решение. Используем признак Даламбера. Найдём . Здесь . Получим: . Согласно признаку Даламбера, данный ряд расходится.

4.4. .

Решение. Применим радикальный признак Коши. Найдём . Получим:

. Согласно признаку Коши, данный ряд сходится.

4.5. .

Решение. Проверим сначала для данного ряда выполнения необходимого условия сходимости: . Числитель данной дроби стремится к бесконечности, а знаменатель – ограниченная величина, принимающая, в зависимости от  значения различных знаков. Предел общего члена ряда, таким образом, не определён (и, естественно, не равен нулю), следовательно, данный ряд является расходящимся.

 Задание 5. Исследовать на сходимость знакопеременные ряды:

5.1. .

Решение. Запишем последовательность абсолютных величин членов данного ряда. Получим: . Члены ряда убывают по абсолютной величине. Теперь найдём предел общего члена ряда, составленного из абсолютных величин. Получим:   - как предел обобщённого гармонического ряда при . Таким образом, выполняются оба условия признака Лейбница, и данный ряд является сходящимся. Поскольку выше мы установили сходимость ряда, составленного из абсолютных величин, то данный ряд сходится абсолютно.

5.2. .

Решение. Рассмотрим ряд, составленный из абсолютных величин членов данного ряда:

. Он будет сходящимся, так как члены его составляют геометрическую прогрессию, знаменатель которой по модулю меньше единицы. Следовательно, данный ряд сходится, и сходится абсолютно.

 Задание 6. Найти радиус, интервал и область сходимости ряда:

Решение. Запишем коэффициент данного ряда: . Найдём радиус сходимости данного ряда: . Интервал сходимости данного ряда будет . Проверим поведение ряда в конечных точках данного интервала.

Пусть . Получим ряд . Проверим его сходимость по признаку Даламбера. . Ряд расходится, следовательно, точка  не принадлежит области сходимости.

Пусть  . Получим ряд . Получили знакочередующийся ряд, расходимость которого легко устанавливается с помощью признака Лейбница (не выполняется первое условие). То есть, точка  также не входит в область сходимости. Итак, область сходимости данного ряда - .

Пример. Исследовать методами дифференциального исчисления функцию  и построить ее график.

Пределы числовых последовательностей и функций. Образец выполнения типового расчёта № 1. Задание. Найти пределы числовых последовательностей, или установить их расходимость

Типовой расчёт № 2 Дифференцирование функции одной переменной. Исследование функций с помощью производной


Примеры решения задач по математике