Расчет на прочность и жесткость при растяжении - сжатии
Выбор материала и допускаемых напряжений.
Расчет физико-механических характеристик материала.
Диаграмма растяжения дюралюминия Д16 изображена на рис 1.1. Образец длиной l0=80 мм и диаметром d0=8 мм разрушается с образованием шейки d1=5,9 мм, что свидетельствует о том, что материал пластичный. Площадь поперечного сечения образца до испытаний:
после разрушения:
относительное остаточное
удлинение:
Относительное остаточное
сужение:
Определим основные характеристики прочности.
Предел пропорциональности
Условный предел текучести
Предел прочности (временное сопротивление σв)
Расчет допускаемых напряжений
Допускаемое напряжение [σ] выбираем, как некоторую долю предельного напряжения σпред, то есть
где n – коэффициент запаса прочности.
Рекомендуемые знания n = 1,5 ÷ 2,5. Примем n = 1,5, тогда
МПа
Проектировочный расчет на прочность ступенчатого стержня.
Для ступенчатого стержня представленного на рис 1.2 необходимо построить эпюру продольных сил, построить эпюру напряжений, отнесенную к площади А0, найти А0 из условия прочности.
Построение эпюры продольных сил.
Составим уравнение равновесия системы (рис 1.2)
, откуда
Разобьем стержень на 3 участка АВ, ВС, СD, проведем на каждом из них произвольные сечения с координатами z1, z2, z3.
Участок АВ ( 0 ≤ z1 ≤ l1 = 0,2 м ). Из равновесия оставленной верхней части следует, что N(z1) = RA – qz1.
Значение N(z1) в начале участка т.А и в конце участка т.В равна N(z1=0) = RA = 48 кН и N(z1=l1) = RA – ql1 = 48 – 10 ∙ 0,2 = 46 кН.
На участке ВС ( 0 ≤ z2 ≤ l2 = 0,6 м ). Из условия равновесия получим N(z1) = RA – q(l1 + z2).
Значение N(z2) в начале участка т.В и в конце участка т.С равна N(z2=0) = =RA – ql1 = 48 – 10 ∙ 0,2 = 46 кН и N(z2=l2) = RA – q(l1 + l2) = 48 – 10(0,2 + 0,6) = =48 – 8 = 40 кН.
На участке СD ( 0 ≤ z3 ≤ l3 = 0,5 м ). Отбросим верхнюю часть, ее действие заменим продольной силой N(z3). Из условия равновесия следует
N(z3) = Р1 + q(l3 – z3).
Функция N(z3) представляет линейную зависимость. Значение N(z3) в начале участка т.D и в конце участка т.С равна N(z3=l3) = Р1 = 35 кН и N(z3=0) = Р1 + ql3 = 35 + 10 ∙ 0,5 = 35 + 5 = 40 кН.
По полученным данным построим ЭN (рис 1.3, а)
Рентгеноструктурный анализ и рентгеновская дефектоскопия.
Рентгеновские лучи имеют ту же природу, что и световые лучи, т. е. представляют собой электромагнитные колебания, но длина их волн другая: световых лучей от 7,5 х10-5 до 4 х10-5 см, рентгеновских -- от 2 х10-7 до 10-9 см.
Рентгеновские лучи получаются в рентгеновских трубках в результате торможения электронов при их столкновении с поверхностью какого-либо металла. При этом кинетическая энергия электронов превращается в энергию рентгеновских лучей.
Рентгеноструктурный анализ основан на способности атомов в кристаллической решётке отражать рентгеновские лучи. Отражённые лучи оставляют на фотопластинке (рентгенограмме) группу пятен или колец. По характеру расположения этих колец (пятен) определяют тип кристаллической решётки, а также расстояние между атомами (положительными ионами) в решётке.
Рентгеновское просвечивание основано на способности рентгеновских лучей проникать в глубь тела. Благодаря этому можно, не разрезая металлических изделий, увидеть на рентгеновском снимке различные внутренние дефекты металла: трещины, усадочные раковины, пороки сварки… .
Методы регистрации пороков в материале основаны на том, что рентгеновские лучи, проходя через металл, частично поглощаются. При этом менее плотные части металлического изделия (участки с пороками) поглощают лучи слабее, чем плотные (сплошной металл). Это приводит к тому, что на рентгеновском снимке участки с пороками будут иметь тёмные или светлые пятна на фоне сплошного металла.
Современные рентгеновские аппараты позволяют просвечивать стальные изделия на глубину до 60 – 100 мм.
Для выявления дефектов в металлических изделиях большой толщины начали применять гамма-лучи. Природа гамма-лучей аналогична рентгеновским, но длина волны их меньше. Благодаря большой проникающей способности гамма-лучей ими можно просвечивать стальные детали толщиной до 300 мм.
Контрольные вопросы.
Что называют структурой металлов?
В чём различие между макро- и микроструктурой металлов?
Какими способами исследуется макроструктура?
В чём состоит различие макро- и микрошлифами?
**Почему металлографические микроскопы работают не на проходящем, а на отражённом свете?
Почему отдельные кристаллы анизотропны, а свойства металлических изделий одинаковы во всех направлениях?
Какие свойства присущи телам кристаллического строения в отличие от аморфных тел?
Какова природа рентгеновских лучей и как они образуются?
Как определяется тип кристаллической решётки металла?
Какие типы кристаллических решёток вы знаете?
**Каким из известных вам способов можно обнаружить газовую раковину в стальной отливке на глубине 200 мм, не разрушая заготовки?
Задание: Из перечисленных ниже твёрдых веществ назовите вещества, имеющие определённую температуру плавления: свинец, стекло, медь, янтарь, клей, магний, воск, железо, канифоль, титан. К каким телам вы их отнесёте?
Содержание и задачи курса сопротивление материалов |