Дифференциальные уравнения

Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Типовой за 1 курс
Неопределенные интегралы
Интеграл от рациональной функции.
Проинтегрировать тригонометрическую функцию
Вычислить площадь фигуры
Вычислить объем тела
Первообразная функция
Вычислить площадь фигуры
Вычислить несобственный интеграл
Правила вычисления двойных интегралов
Дифференциальные уравнения (ДУ)
Найти общее решение
Найти частное решение ДУ
Числовые ряды. Сумма ряда
Абсолютная и условная сходимость знакопеременных рядов
Степенные ряды
Две задачи математического анализа
Метод замены переменной (способ подстановки) 
Интегрирование по формулам
Способ подстановки
Интегрирование по частям
Интегрирование рациональных дробей
Интегрирование иррациональных функций
Интегрирование тригонометрических функций
Несобственный интеграл 1-го рода
Формула Ньютона - Лейбница
Исследовать сходимость интеграла.
Таблица основных неопределенных интегралов
Основные методы интегрирования
Методом интегрирования по частям
Интегрирование рациональных функций
Интегрирование некоторых иррациональных функций
Интегрирование тригонометрических функций
Определенный интеграл и его приложения
Вычисление площадей плоских фигур
Вычислить объем тела, образованного вращением фигуры
Несобственные интегралы
Определенный интеграл и его приложения
Обыкновенным дифференциальным уравнением
Дифференциальные уравнения I порядка
Уравнения с разделяющимися переменными
Однородные уравнения
Линейные уравнения
Частные случаи уравнений II порядка
Рассмотрим линейное неоднородное уравнение
 

 

Линейное однородное уравнение с постоянными коэффициентами

Рассмотрим линейное неоднородное уравнение с постоянными коэффициентами  (1)

и соответствующее ему однородное , (2)

где  и   – постоянные коэффициенты.

Найдем общее решение уравнения (2).

Будем искать решение уравнения (2) в форме .

Тогда .

Подставляя это в уравнение (2), получим: .

Но так как , то  (3)

Это уравнение по отношению к уравнению (2), называется характеристическим.

Если функция  есть решение уравнения (2), то  должно быть корнем характеристического уравнения (3).

Рассмотрим три возможные случая:

корни уравнения (3) вещественны и различны

корни вещественны и равны

корни комплексные сопряженные

1 случай.  и действительны.

В этом случае функции  и  будут решениями уравнения (2). Так как их отношение , то эти решения линейно независимы и, следовательно, они составляют фундаментальную систему. А поэтому общее решение уравнения (2) в этом случае будет

 (4)

Пример.

Характеристическое уравнение будет .

Его корни . Общее решение будет .

2 случай. Корни равны .

В этом случае имеем пока только одно решение . Покажем, что вторым решением будет . Действительно,

Подставим это в левую часть уравнения (2), тогда получим

,

так как  есть корень уравнения (3), и потому, что . А это значит, что  есть решение (2), что и требовалось доказать.

Итак, мы имеем два решения  и . Они линейно независимы, следовательно, образуют фундаментальную систему решений. Поэтому общий интеграл будет .

Пример.

Характеристическое уравнение . Корни .

Общее решение .

3 случай. Корни комплексные сопряженные

Следовательно, имеем два комплексных линейно независимых решения .

Общее решение будет .

Ясно, что иметь вещественное общее решение надо считать  и  комплексными числами. Выразим  и  по формулам Эйлера, тогда

Положим здесь . Тогда .

Поэтому .

Таким образом, в случае комплексных сопряженных корней характеристического уравнения, уравнение (2) имеет два линейно независимых вещественных решения .

Общее решение .

Пример.

 

Общее решение .

Примеры решения задач по математике