Дифференциальные уравнения

Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Типовой за 1 курс
Неопределенные интегралы
Интеграл от рациональной функции.
Проинтегрировать тригонометрическую функцию
Вычислить площадь фигуры
Вычислить объем тела
Первообразная функция
Вычислить площадь фигуры
Вычислить несобственный интеграл
Правила вычисления двойных интегралов
Дифференциальные уравнения (ДУ)
Найти общее решение
Найти частное решение ДУ
Числовые ряды. Сумма ряда
Абсолютная и условная сходимость знакопеременных рядов
Степенные ряды
Две задачи математического анализа
Метод замены переменной (способ подстановки) 
Интегрирование по формулам
Способ подстановки
Интегрирование по частям
Интегрирование рациональных дробей
Интегрирование иррациональных функций
Интегрирование тригонометрических функций
Несобственный интеграл 1-го рода
Формула Ньютона - Лейбница
Исследовать сходимость интеграла.
Таблица основных неопределенных интегралов
Основные методы интегрирования
Методом интегрирования по частям
Интегрирование рациональных функций
Интегрирование некоторых иррациональных функций
Интегрирование тригонометрических функций
Определенный интеграл и его приложения
Вычисление площадей плоских фигур
Вычислить объем тела, образованного вращением фигуры
Несобственные интегралы
Определенный интеграл и его приложения
Обыкновенным дифференциальным уравнением
Дифференциальные уравнения I порядка
Уравнения с разделяющимися переменными
Однородные уравнения
Линейные уравнения
Частные случаи уравнений II порядка
Рассмотрим линейное неоднородное уравнение
 

 

Частные случаи уравнений II порядка

Рассмотрим частные случаи уравнений II порядка, допускающих «понижение» порядка, т.е. случаи, когда уравнение II порядка приводится к интегрированию двух уравнений первого порядка.

Правая часть не содержит  и

 (1)

Положим . Тогда  и .

Получили уравнение первого порядка.

Отсюда  или .

Имеем опять уравнение первого порядка  или

Получили общее решение уравнения (1).

Правая часть уравнения не содержит

 (2)

Положим , тогда для z имеем уравнение .

Пусть его решение будет . Следовательно, .

Отсюда .

Это общее решение уравнения (2).

Пример. .

Положим , тогда  и его решение .

Следовательно,  и  

или  – общее решение уравнения (2)

Правая часть не содержит х

 (3)

Положим  и будем считать z функцией y.

Тогда . Итак, .

Подставляя это в уравнение (3), получим: , т.е. уравнение первого порядка относительно z. Решив его, будем иметь  или .

Получили уравнение с разделяющимися переменными. Отсюда .

 Это общий интеграл уравнения (3).

Пример. .

Положим , тогда  или . Отсюда  

или  или   - общее решение.

Смотрите здесь создание сайта под ключ.
Примеры решения задач по математике