Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Биржа студенческих
работ. Контрольные, курсовые, рефераты.

Студенческий файлообменник

Студенческий файлообменник

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Вычисление тройных и двойных интегралов Метод замены переменной Определенный интеграл Площадь криволинейной трапеции Свойства двойного интеграла Производная сложной функции Геометрические приложения двойных интегралов

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Требуется вычислить данный интеграл в новых координатах u, v, w. Взаимосвязь старых и новых координат описывается соотношениями: Предполагается, что выполнены следующие условия:
  1. Функции φ, ψ, χ непрерывны вместе со своими частными производными;
  2. Существует взаимно-однозначное соответствие между точками области интегрирования U в пространстве xyz и точками области U' в пространстве uvw;
  3. Якобиан преобразования I (u,v,w), равный отличен от нуля и сохраняет постоянный знак всюду в области интегрирования U.
Тогда формула замены переменных в тройном интеграле записывается в виде: В приведенном выражении означает абсолютное значение якобиана. Для вычисления тройных интегралов часто используются цилиндрические и сферические координаты.

Ниже приводятся примеры вычисления интегралов с использованием других преобразований координат.

Соленоидальное поле. Векторная трубка в соленоидальном поле

Определение.- соленоидальное поле, если .

Векторная линия обладает тем свойством, что в любой ее точке вектор касательной к линии совпадает с .

Векторная трубка – это совокупность векторных линий.

Пусть - сечения векторной трубки и - ее боковая поверхность. . Рассмотрим внешнюю нормаль к и применим теорему Остроградского: , в случае соленоидального поля. Итак, . На по определению векторной линии , поэтому или . Изменяя направление нормали на на противоположное получаем, что поток соленоидального поля через поперечные сечения векторных трубок постоянен.

Найти объем области U, заданной неравенствами

Найти объем наклонного параллелепипеда, заданного неравенствами

Геометрические приложения поверхностных интегралов