Типовой расчет Неопределенные и определенные интегралы

Портативная акустическая система

Гуманитарные науки

Гуманитарные науки

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Типовой за 1 курс
Неопределенные интегралы
Интеграл от рациональной функции.
Проинтегрировать тригонометрическую функцию
Вычислить площадь фигуры
Вычислить объем тела
Первообразная функция
Вычислить площадь фигуры
Вычислить несобственный интеграл
Правила вычисления двойных интегралов
Дифференциальные уравнения (ДУ)
Найти общее решение
Найти частное решение ДУ
Числовые ряды. Сумма ряда
Абсолютная и условная сходимость знакопеременных рядов
Степенные ряды
Две задачи математического анализа
Метод замены переменной (способ подстановки) 
Интегрирование по формулам
Способ подстановки
Интегрирование по частям
Интегрирование рациональных дробей
Интегрирование иррациональных функций
Интегрирование тригонометрических функций
Несобственный интеграл 1-го рода
Формула Ньютона - Лейбница
Исследовать сходимость интеграла.
Таблица основных неопределенных интегралов
Основные методы интегрирования
Методом интегрирования по частям
Интегрирование рациональных функций
Интегрирование некоторых иррациональных функций
Интегрирование тригонометрических функций
Определенный интеграл и его приложения
Вычисление площадей плоских фигур
Вычислить объем тела, образованного вращением фигуры
Несобственные интегралы
Определенный интеграл и его приложения
Обыкновенным дифференциальным уравнением
Дифференциальные уравнения I порядка
Уравнения с разделяющимися переменными
Однородные уравнения
Линейные уравнения
Частные случаи уравнений II порядка
Рассмотрим линейное неоднородное уравнение
 

 

В задании VII требуется вычислить объем тела, образованного вращением фигуры, ограниченной графиками функций. Причем функция может быть задана в декартовых, параметрических или полярных координатах.

Если объем V тела существует и  есть площадь сечения тела плоскостью, перпендикулярной к оси Ох в точке x, то

.

Объем тела, образованного вращением вокруг оси Ох криволинейной трапеции   , где  - непрерывная однозначная функция, равен

Если криволинейная трапеция, ограниченная кривой , , вращается вокруг оси Оу, то объем тела вращения вычисляется по формуле:

.

Если криволинейный сектор, ограниченный кривой  и лучами  вращается вокруг полярной оси, то объем тела вращения равен:

Рассмотрим типовые задачи:

Пример 13. Найти объем тела, образованного вращением вокруг оси Ох фигуры, ограниченной линиями  и .

Решение. Т.к. область значений функции  - , то фигура, ограниченная заданными линиями будет лежать в верхней полуплоскости.

Найдём абсциссы точек пересечения кривых. Для этого решим систему уравнений:

Имеем , .

Тогда, объем тела:

Пример 14. Фигура, ограниченная кривой ,   и осью Ox, вращается вокруг оси Оy. Найти объем тела вращения.

Решение. Если t=0, то x=4, y=0, если t=, то x=0, y=0. Причем  и . Следовательно, объем тела вращения равен:

Пример 15. Фигура, ограниченная линией , вращается вокруг полярной оси. Найти объем тела вращения.

Решение. Фигура симметрична относительно полярной оси, поэтому для вычисления объема достаточно вращать ее верхнюю половину .

Примеры решения задач по математике